
Some objects are more equal than
others

The many meanings of equality, value and identity

Roger Orr and Steve Love

ACCU 2011

Possible meanings of “equality”

1. Refer to the same memory location

2. Have the same value

3. Behave the same way

It is - believe it or not - harder than it looks, even
ignoring #3.

Language * Equals

Curly bracket languages:

Java a == b always does something

Java & C# object.[eE]quals always does something

C++ & C# You can overload the meaning of ==

C# & Java You can override [eE]quals to customize
behaviour

...and that’s just 3* languages!

(* - yes, C# is sufficiently different to Java in this respect...)

a == b

Out of the box

C++ predefined for all built-ins and library types
(e.g. std::string), fails to compile for any
custom type

Java predefined for primitive built-ins, otherwise
performs identity comparison for objects

C# predefined or overridden for all built-ins and
lib types (references or values), fails to
compile for custom value types, performs
identity comparison for reference types

a == b

With some work

C++ you can define == for any type. Even
built-ins (but this is prohibited)

Java you cannot change its meaning

C# you can define it for any custom type, but
you must provide !=

a.[Ee]quals(b)

Out of the box

C++ doesn’t have it

a.[Ee]quals(b)

Out of the box

Java overrides equals() for some types

public class IntegerEquals
{

public static void main(String [] args)
{

test (10) ;
test (1000) ;

}

public static void test (int value)
{

System. out . pr int ln ("Testing " + value) ;
Object obj = value ;
Object obj2 = value ;
i f (obj . equals (obj2)) System. out . pr int ln ("Equals") ;
i f (obj == obj2) System. out . pr int ln ("==") ;

}
}

a.[Ee]quals(b)

Out of the box

C# For reference types, the same as Java. For
value types, it’s more complicated...

struct Easy
{

int X;
int Y[100] ;

}
struct Hard
{

int X;
MyType Y;

}

null?

public class NullEquals
{

public static void Main()
{

object a = null ;
object b = new object () ;

i f (a . Equals (b))
Console . WriteLine ("Now there ’ s a thing") ;

i f (object . Equals (a , b))
Console . WriteLine ("This should be safe enough") ;

}
}

Floating point?

(We’ll leave this for Dr Harris, who has made
a cursory investigation of this recently...

For now, we note that floating point numbers
might not obey normal rules for equality.)

So, are there more?

Java - no.

C++ there is std::equal_to, which by default
performs ==. You can specialise it for your
own type.

#include <functional>
#include <iostream>

int main()
{

std : : cout << "std : : equal_to<int >()(10,10) : " << std : : equal_to
<int>()(10,10) << std : : endl ;

}

C# gets its own page...

C#’s list of equality measures

object.Equals (we’ve already seen)
object.ReferenceEquals
IEquatable<T>
IEqualityComparer
IEqualityComparer<T>
EqualityComparer<T>
IStructuralEquatable
StringComparer

...and others we’ve probably missed...

C# and value types
object.ReferenceEquals has an interesting property:
public class RefEqual
{

public stat ic void Main ()
{

int ten = 10;
System. Console . WriteLine (object . ReferenceEquals (ten , ten)) ;

}
}

Java has a similar problem with intern’ed strings
public class Intern
{

private static final String s1 = "Something" ;
private static final String s2 = "Some" ;
private static final String s3 = "thing" ;

public static void main(String [] args)
{

i f (s1 == s2 + s3) System. out . pr int ln ("match! ") ;
}

}

Over*load*ing

public class OverloadingEquals
{

private int value ;

public OverloadingEquals (int initValue)
{

value = initValue ;
}

public boolean equals (OverloadingEquals oe)
{

return oe != null && oe. value == value ;
}

public static void main(String [] args)
{

OverloadingEquals oe1 = new OverloadingEquals(10) ;
OverloadingEquals oe2 = new OverloadingEquals(10) ;

Object obj1 = oe1;
Object obj2 = oe2;

System. out . pr int ln ("oe1. equals (oe2) : " + oe1. equals (oe2)) ;
System. out . pr int ln ("oe1. equals (obj2) : " + oe1. equals (obj2)) ;
System. out . pr int ln ("obj1 . equals (oe2) : " + obj1 . equals (oe2)) ;
System. out . pr int ln ("obj1 . equals (obj2) : " + obj1 . equals (obj2)) ;

}
}

Other ways of looking at it

The difference between equality and equivalence

a.Compare(b)
returns 0 when a and b are equal

!(a<b) && !(b<a)
is a similar concept

Equality is...

I Reflexive
I a==a is always true

I Commutative
I if a==b then b==a

I Transitive
I if a==b and b==c then a==c

I Reliable
I Never throws.
I This means checking for null!

C# rules

(In the list, x, y, and z represent object references that
are not null.)

I x.Equals(x) returns true, except in cases that
involve floating-point types. See IEC 60559:1989,
Binary Floating-point Arithmetic for Microprocessor
Systems.

I x.Equals(y) returns the same value as y.Equals(x).
I x.Equals(y) returns true if both x and y are NaN.
I If (x.Equals(y) && y.Equals(z)) returns true, then

x.Equals(z) returns true.
I Successive calls to x.Equals(y) return the same

value as long as the objects referenced by x and y
are not modified.

I x.Equals(null) returns false.

Java rules

I It is reflexive: for any non-null reference value x,
x.equals(x) should return true.

I It is symmetric: for any non-null reference values x
and y, x.equals(y) should return true if and only if
y.equals(x) returns true.

I It is transitive: for any non-null reference values x,
y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) should return true.

I It is consistent: for any non-null reference values x
and y, multiple invocations of x.equals(y)
consistently return true or consistently return false,
provided no information used in equals
comparisons on the objects is modified.

I For any non-null reference value x, x.equals(null)
should return false.

C++ rules

5.10/4 Each of the operators shall yield true if the
specified relationship is true and false if it is false.

Polymorphic equality

class Coordinate
{

public double X { get ; set ; }
public double Y { get ; set ; }

public override int GetHashCode() / / {
. . . }

public override bool Equals (object
other)

{
var right = other as Coordinate ;
i f (r ight !=null)

return X == right .X && Y ==
right .Y;

return false ;
}

}

class Coordinate3d : Coordinate
{

public double Z { get ; set ; }

public override int GetHashCode() / / {
. . . }

public override bool Equals (object
other)

{
var right = other as Coordinate3d ;
i f (r ight != null)

return base. Equals (other) &&
Z == right .Z;

return false ;
}

}

Polymorphic equality

var p1 = new Coordinate { X = 2.3 , Y = 5.6 };
var p2 = new Coordinate3d { X = 2.3 , Y = 5.6 , Z = 10.11 };

Ooops...
p1.Equals(p2) is True
p2.Equals(p1) is False

Implementing IEquatable<T> fixes this for C# - except
it doesn’t!

More ooops...
p1.Equals(p2) and p2.Equals(p3) but
p1.Equals(p3) could still be false

LSP The Liskov Substitutability Principle (a.k.a
the Least Surprise Principle!)

Incidental and intentional equality

Avoid defining equality just so it can be used in
conjunction with something that requires it, e.g. hashed
containers.

C++ unordered_set can be given its own
equality comparer..

Java HashSet can only use object.equals(), so
you’re stuck with it!

C# HashSet can use a pluggable equality
comparer (IEqualityComparer<T>)

Equality used for a key compare might be different than
for other uses!

== and [Ee]quals are different!

The Ace of Spaces or An Ace of Spades?

In Java and C#, override [Ee]quals for a value-check.

In C++, explicitly compare addresses or contents.
Copying and slicing can interfere with naive use of
addresses.

Identity is important

class Thing : IEquatable< Thing >
{

public override bool Equals (object other)
{

return Equals (other as Thing) ;
}
public bool Equals (Thing other)
{

i f (other != null)
return Value == other . Value ;

return false ;
}
public static bool operator==(Thing lef t , Thing right)
{

return l e f t . Equals (r ight) ;
}
public static bool operator!=(Thing lef t , Thing right)
{

return ! (l e f t == right) ;
}
public string Value { get ; set ; }

}

Identity is important

Reference equality matters
Over-ride C#’s default operator== at your own risk!

C# ReferenceEquals: for mad fools who override ==
but you have to use it explicitly

public bool Equals (Thing other)
{

i f (! ReferenceEquals (other , null))
return Value == other . Value ;

return false ;
}

The supporting cast

== and != go together
C# and Java have no [Nn]otEquals()
What about comparison? I.e. <, >, IComparable, et.al.?

and...

Hashcodes

Equality and hashing

"classes [..] must [...] guarantee that two
objects considered equal have the same hash
code"

public static class Bogus
{

public String Value ;
@Override public int hashCode()
{

return Value .hashCode() ;
}
@Override public boolean equals (Object other)
{

return ((Bogus) other) . Value . equals (Value) ;
}

}

Consider what happens if Value changes after inserting
into a hashed container...

Buckets of possibility

Boolean hilarity

using System;

static class Program
{

struct HashTest
{

public bool Enabled ;
public string Value ;

}

public static void Main()
{

var h1 = new HashTest{ Enabled = true , Value = "Great! " };
var h2 = new HashTest{ Enabled = false , Value = "Great! " };

Console . WriteLine (h1.GetHashCode() == h2.GetHashCode()) ;

h1. Value = "Rubbish! " ;

Console . WriteLine (h1.GetHashCode() == h2.GetHashCode()) ;
}

}

Collections

When are two collections of things equal?
I Having the same items?
I ...in the same order?
I Does it matter?

(as a side note, we can add to the C# list of equality
checks, with SequenceEqual, which insists on the same
items, in the same order - polymorphic equality making

some sense).

Making it all simple

Values and references
Know the difference between (polymorphic) reference
types and value types in all languages. Never mix the
two!

Immutability
Making value types immutable has many benefits, far
beyond equality.

Polymorphism
If equality is only used for value types, which are
immutable and do not participate in inheritance, almost
all of the difficulties vanish.

Not making it (deliberately) difficult

Floating point numbers
Don’t play nicely with == or [Ee]quals(). There are
alternatives.

Intentional vs. incidental
Make equals mean equals, not just equals for some
cases.

Summary

Equality is hard to define simply
even for a single language.

It is easy to implement, with common sense rules.

see http://www.javapractices.com, and follow links
through Overriding Object methods to implementing
equals.

C# in a Nutshell has a deep exploration of equality in
C#.

